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Abstract
Quantum optics has been dealing with coherent states, squeezed states and many
other non-classical states. The associated mathematical framework makes use
of special functions as Hermite polynomials, Laguerre polynomials and others.
In this connection we here present some formal results that follow directly
from the group O(N) of complex transformations. Motivated by the squeezed
states structure, we introduce the generalized Hermite polynomials (GHP),
which include as particular cases, the Hermite polynomials as well as the heat
polynomials. Using generalized raising operators, we derive new sum rules
for the GHP , which are covariant under O(N) transformations. The GHP and
the associated sum rules become useful for evaluating Wigner functions in a
straightforward manner. As a byproduct, we use one of these sum rules, on
the operator level, to obtain raising and lowering operators for the Laguerre
polynomials and show that they generate an sl(2, R) � su(1, 1) algebra.

PACS numbers: 02.20.Sv, 02.10.Nj, 42.50.Dv

1. Introduction

Quantum optics has been dealing with coherent states, squeezed states (of the harmonic
oscillator—HO) and many other non-classical states [1]. The associated mathematical
framework makes use of special functions as Hermite polynomials, Laguerre polynomials
and others, which have been playing an important role in the field [2–6]. In particular, the
coherent states are generated by exponentials of boson rising operators of the Weyl–Wigner
algebra, and their wavefunctions, in the x-representation, depend on Hermite polynomials.
These polynomials are also encountered when dealing with Wigner functions [3]. Therefore,
when working with coherent states or with Wigner functions, one frequently encounters
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complicated relationships involving Hermite, and also Laguerre, polynomials. Such relations
will be called sum rules or addition theorems.

For example, in order to derive the wavefunction of nth HO state |n〉 in the squeezed-state
representation 〈p, q; λ|n〉 (see section 5.2 below), Schleich, Walls and Wheeler [7] used the
following sum rule:

(−4)nLn(x
2 + y2) =

n∑
k=0

1

(n − k)!k!
H2n−2k(x)H2k(y), (1)

where Ln(x) and Hn(x) are the Laguerre and the Hermite polynomials. This formula follows
immediately by substituting the well-known equality [8, section 8.972]

H2n(x) = (−4)nn!L
− 1

2
n (x2) (2)

into the following addition formula for the associated Laguerre polynomials Lα
n(x)

[8, section 8.974]:

Lα+β+1
n (x + y) =

n∑
k=0

Lα
n−k(x)L

β

k (y). (3)

While working on squeezed states, one of us [9] was led to conjecture the validity of the sum
rule

1

n!2n
Hn(

√
2x)Hn(

√
2y) =

n∑
k=1

(−1)kL
− 1

2
n−k((x + y)2)L

− 1
2

k ((x − y)2). (4)

By substituting relation (2) into equation (4), we arrive at the following interesting sum rule
for Hermite polynomials:

2n

n!
Hn

(
x + y√

2

)
Hn

(
x − y√

2

)
=

n∑
k=0

(−1)k

(n − k)!k!
H2n−2k(x)H2k(y). (5)

We shall call equation (5) the factorization sum rule. Note that the rhs of equations (1) and
(5) differ only by the sign factor (−1)k . However, their similarity is deceptive. In fact, it
turns out that these two sum rules have completely different origins, as we shall see below.
Equation (5) can be checked explicitly for n = 1, 2, 3, but such verification becomes tedious,
already for n = 4.

We here prove equation (5) by first recognizing that the raising operators for the Hermite
polynomials transform covariantly under the group of complex rotations O(N), and then
using the binomial expansion (15) of powers of sums of raising operators. Subsequently, we
generalized this technique to N variables, and thus developed a powerful general procedure
for deriving new and more complicated sum rules.

In the present paper we describe the above technique and explain the symmetry hidden
behind the sum rules. As illustrations, we derive several new sum rules, and give new proofs to
already known sum rules, which are usually proved by using the generating function method.
As a natural extension of those techniques, we define generalized Hermite polynomials (GHP),
which include, as special cases: the standard Hermite polynomials, the heat polynomials
[10, 11], as well as simple powers.

By utilizing one of such sum rule, at the operator level, we derive rising and lowering
operators for the Laguerre polynomials, and show that they generate an sl(2, R) � su(1, 1)

algebra [12]. The Laguerre polynomials are also shown to yield an infinite-dimensional
irreducible representation of sl(2, R) group.

The paper is organized as follows: in section 2 we define the generalized raising operators
that depend on the usual variable x, plus two (complex) parameters, α and β. We then show the
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covariance of these operators under complex rotations. By making use of the raising-operator
techniques, in section 3 we prove old and new sum rules which show to be useful to derive
several secondary sum rules. In section 4, we derive raising and lowering operators for the
Laguerre polynomials, and show that they generate an sl(2, R) algebra. In section 5 we present
some applications: We first use the factorization sum rule (5) to evaluate an integral, which
in turn is used to obtain the Wigner function of the HO wavefunctions. Then we demonstrate
three unfamiliar applications of the GHP , one of which involves squeezed states. Finally, in
section 6 we give a summary of our work. In appendix A we give various properties of the
GHP: we define the GHP via the raising operators, derive scaling and symmetry properties;
we obtain a lowering operator for the GHP; we derive the generating function, and point out
two methods for obtaining the power expansion for the GHP . In appendix B we relate special
GHP to some standard known polynomials.

2. Raising operators and their covariance transformation under complex
orthogonal rotations

Although the real orthogonal groups are, by far, quite familiar, we shall show that most of
the known results and sum rules are automatically valid also for the less familiar complex
orthogonal group O(N) ≡ O(N, C). Therefore, we shall be working with complex rotations
O(N) throughout the present paper, unless stated otherwise.

The group of complex rotations O(N) is defined as the group of all the N × N complex
matrices O, such that OOT = OT O = 1, where T means transposed. These transformations
preserve the real scalar product, x · y := ∑N

i=1 xiyi , so that (Ox) · Oy = x · y, where x and
y are complex vectors in general, i.e., the components xi, yi ∈ C. Note that, in contrast to
the real orthogonal groups, the complex O(N) groups are not subgroups of the corresponding
unitary groups SU(N).

For example, the following linear transformation:(
w1

w2

)
=

(
cosh χ i sinh χ

−i sinh χ cosh χ

)(
x1

x2

)
(6)

is a complex orthogonal rotation, which is not unitary. In fact, if we make the identification
x := (x1, x2) ≡ (z, ict), (6) describes a Lorentz boost in two space–time dimensions.

Under complex orthogonal coordinate transformations O ∈ O(N):

wi := (Ox)i =
N∑

j=1

Oijxj , for i = 1, . . . , N, (7)

the partial derivatives

∂

∂wi

=
N∑

j=1

∂xj

∂wi

∂

∂xj

=
N∑

j=1

O−1
ji

∂

∂xj

=
N∑

j=1

Oij

∂

∂xj

, (8)

transform exactly as the coordinates, because of the property O−1 = OT of orthogonal
matrices. This is the mathematical reason why in quantum mechanics the components of
the linear momentum operator, pi = −ih̄ ∂

∂xi
, in coordinate representation, transform like the

coordinates under rotations. However, the pi do not transform like the coordinates xi under
unitary transformations.

Therefore, any linear combination of the coordinates and the partial derivatives,

R(α, β; xi) := αxi − β
∂

∂xi

, (9)
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must transform like the coordinates, for any complex parameters α and β:

R(α, β;wi) := αwi − β
∂

∂wi

=
N∑

j=1

Oij

(
αxj − β

∂

∂xj

)
=

N∑
j=1

OijR(α, β; xj ). (10)

We call such linear combinations (9) raising operators. They generate infinite sequences of
special functions gn(x) = Rn(x)g0(x), when applied to appropriate functions g0(x), which
we call vacuum or ground-state functions.

2.1. Illustrative examples

Before explaining the above formalism further, it is useful to keep the following three examples
in mind:

(1) The standard Hermite polynomials. These polynomials satisfy the well-known recursion
formula Hn+1(x) = 2xHn(x) − 2nHn−1(x) and the relation ∂Hn(x)

∂x
= 2nHn−1(x).

Combining these two relations, we get

Hn+1(x) = 2xHn(x) − 2nHn−1(x) =
(

2x − ∂

∂x

)
Hn(x) = R(2, 1; x)Hn(x) (11)

which shows that the usual Hermite polynomials can be generated by applying the raising
operator R(2, 1; x) := 2x − ∂

∂x
to the ground-state function g0(x) = H0(x) = 1.

(2) The eigenfunctions of the HO. The raising operators for this system are the usual
creation operators quite familiar from quantum mechanics, a†(x) := (

x − ∂
∂x

)/√
2 =

R(1/
√

2, 1/
√

2; x). Here, the ground-state function is g0(x) = e−x2/2 is that of the HO.
The excited states are given by ψn(x) ∝ gn(x) = (a†)n e−x2/2 = 2−n/2Hn(x) e−x2/2.

(3) Powers of x. For β = 0 and g0 = 1, we get R(α, 0; x) = αx, so that gn(x) = αnxn.

2.2. Standard versus generalized Hermite polynomials

We now use the raising operator (9) to define generalized Hermite polynomials as

H̃n(α, β; x) := Rn(α, β; x) · 1. (12)

The GHP polynomials are derived in appendix A, and their explicit power expansion
is given in equation (A.3). Besides the standard Hermite polynomials, these GHP include
the heat polynomials (see equation (A.3) and section 5.2 below) and simple powers of x,
as particular cases. Their properties and applications are presented and discussed in the
appendices.

Because of the scaling relation,

R(α, β; xi) =
√

αβR(2, 1; x̃i ) where x̃i :=
√

α

β
xi, for α, β �= 0, (13)

the generalized raising operator (9) is proportional to a standard raising operator, say
R(2, 1; x̃i ), but with a re-scaled variable x̃i . In this way, we can relate the GHP to the
standard Hermite polynomials, as in equation (A.11). However, by keeping β as a free
parameter we have two main advantages:

(1) It allows us to take the zero limit, β → 0, without getting involved with ratios of infinities,
since the re-scaled variable x̃i blows up in this limit: x̃i = √

α/βxi → ∞.
(2) For real and negative values of β and α > 0, which is needed to get the heat equation, the

re-scaled variable x̃i becomes pure imaginary. So, by keeping β as a free parameter, we
avoid using complex arguments.
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In contrast, the freedom of choosing α �= 0 is not important, because α serves essentially
as a normalization factor. Therefore, we could have chosen a fixed α throughout this paper
to shortcut the notation. But we decided to leave it as a free parameter, because this freedom
happens to be convenient for some manipulations. Thus, from now on we shall use the general
expression (9) for Ri , unless stated otherwise.

3. Sum rules

3.1. Techniques

We shall derive old and new sum rules by using combinations of the following procedures:

(a) Use of equation (10) to express raising operators R(wi) as sums over R(xj ).
(b) Expressing powers of R(wi) (to shorten the notation we omit α and β) in terms of powers

of R(xj ) by using the multinomial expansion:

Rn(wi) = (Oi1R(x1) + Oi2R(x2) + · · · + OiNR(xN))n i = 1, . . . , N,

=
∑
|p|=n


 n!

p1!p2! · · ·pN !

N∏
j=1

(OijR(xj ))
pj


 ,

where |p| ≡ p1 + · · · + pN. (14)

This expansion is possible, since the R(xi) commute with each other, [R(xi), R(xj )] = 0.
For N = 2 equation (14) is a binomial expansion,

Rn(Oi1x + Oi2y) =
n∑

s=0

(
n

s

)
On−s

i1 Os
i2R

n−s(x)Rs(y), i = 1, 2, (15)

where x ≡ x1 and y ≡ x2.
(c) The R(wi) commute among themselves, because the R(xj ) do. Therefore, by multiplying

expansions of type (14) of different Rmi (wi) and collecting the resulting powers of R(xj ),
we get homogeneous polynomials in R(xj ),

N∏
i=1

Rmi (wi) =
∑

|p|=|m|
C[m][p](O)

N∏
j=1

Rpj (xj ), where [p] ≡ [p1, . . . , pN ],

(16)

where C[m],[p](O) are constants, which depend on O in a complicated way, in general.
For N = 2 these expressions are still manageable, every element O ∈ SO(2) can be
written as follows:

w1 = cx − sy and w2 = sx + cy,

where c, s ∈ C, with c2 + s2 = 1.
(17)

Applying equation (15) to the transformation (17) gives

Rm(cx − sy)Rn(sx + cy) =
m∑

p=0

n∑
q=0

(
m

p

)(
n

q

)

× (−1)m−pcn+p−qsm+q−pRp+q(x)Rm+n−p−q(y)

≡
m+n∑
r=0

C[m,n],[r,m+n−r](c, s)R
r(x)Rm+n−r (y), (18)
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so, by substituting r = p + q in equation (18) we get

C[m,n],[r,m+n−r](c, s) =
min(n,r)∑

q=0

(
m

r − q

)(
n

q

)
(−1)m−r+qcn+r−2qsm+2q−r . (19)

(d) The inner product of the operator-valued vector R(x) := (R(x1), R(x2), . . . , R(xN)) with
itself is invariant under rotations. Hence,

R · R =
N∑

i=1

R2(wi) =
N∑

j=1

R2(xj ). (20)

(e) Applying the operator equations (14), (16), (20), and their products to the constant
ground function g0(x) ≡ 1 will lead to relations among the multi-dimensional Hermite
polynomials, that have shown usefulness in quantum optics [13].

3.2. New proofs of known sum rules

We shall first prove two known sum rules, using our operator techniques. These are usually
proved by using the generating function, without reference to the symmetry involved. Here,
we shall see that one is based on rotational symmetry and the other follows from translational
symmetry.

3.2.1. The summation theorem

Proposition 1. Let wi = (Ox)i be defined as in equation (7). Then the following sum rule
holds for the corresponding GHP

H̃ n(wi) =
∑
|p|=n


 n!

p1!p2! · · ·pN !

N∏
j=1

(Oij )
pj H̃ pj

(xj )


 (21)

Proof. Equation (21) follows immediately by applying the operator equality (14) to
H0(wi) = H0(xi) ≡ 1. �

The sum rule (21) is known as the ‘summation theorem’ in the literature. It is usually
written in the following cumbersome way [8, section 8.958], [14, p 254]:

1

n!

(
N∑

k=1

a2
k

) n
2

Hn


∑N

k=1 akxk√∑N
k=1 a2

k


 =

∑
p1+p2+···+pN=n

N∏
j=1

{
a

pj

j

pj !
Hpj

(xj )

}
. (22)

With hindsight, we easily recognize that the summation theorem is based on rotational

symmetry, by noting that O1k ≡ ak

/√∑N
k=1 a2

k for k = 1, . . . , N can be regarded, say,
as the first row of an orthogonal matrix O ∈ O(N).

For N = 2 and the special rotation:(
r−
r+

)
=

(
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

)(
x

y

)
, (23)

equation (21) leads to the sum rule (24), due to C Runge [15].
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Corollary 1. The GHP satisfy the sum rule

2n/2H̃ n

(
x + y√

2

)
=

n∑
s=0

(
n

s

)
H̃ s(x)H̃ n−s(y). (24)

This sum rule also follows directly by applying the operator equation (15) to the ground
function g(x) = 1 and then use the definition of the GHP , equation (12).

3.2.2. A sum rule due to translation symmetry. We shall now prove another sum rule, which
is usually derived [16] by using the generating function (A.13). Our derivation shows that the
sum rule is due to translation symmetry:

Proposition 2. The sum rule for the GHP

H̃ n(x + y) =
n∑

s=1

(
n

s

)
(αy)n−sH̃ s(x). (25)

holds.

Proof. Let us first assume that y is a variable which is independent of x. We shall relax this
restriction later on. Then, if the differential operators ∂

∂x
and ∂

∂(x+y)
are applied to functions of

(x + y) only, one gets the same result,

∂

∂x
f (x + y) = ∂

∂(x + y)
f (x + y). (26)

Therefore, we get the following ‘equivalence relation’, denoted by �, between the translated
and the original raising operators, provided that they both are applied to functions of (x + y),

R(α, β; x + y) � α(x + y) − β
∂

∂x
= αy + R(α, β; x). (27)

The rest of the proof follows by induction. Applying both sides of equation (27) to 1 yields
α(x + y), which is certainly a function of x + y. Each additional application of both sides of
equation (27) on the previously produced function of x + y produces, in turn, a new function,
which depends on x + y only. Thus, by applying powers of both sides of equation (27) to
f (x + y) = f (x) = 1 or to any function f = f (x + y), will lead to the same result.

Finally, by applying powers of equation (27) to H̃ 0(x + y) = H̃ 0(x) = 1, and using the
binomial expansion, we immediately get the sum rule (25).

Note that since sum rule (25) is an equality between polynomials, it holds identically for
any x and y, even if y is a function of x, y = h(x). Therefore, we can now forget about our
earlier assumption, that y is a variable which is independent of x. �

The sum rule (25) is quite useful, it can be used to calculate the integral (30), below, used
for evaluating the Wigner function [17]

W(x, y) = 1

π

∫ ∞

−∞
�∗(x + y)�(x − y) e2ixy dy = 1

π

∞∑
m,n=0

c∗
mcnWm,n(x, y) (28)

for �(x) = ∑∞
n=0 cnψn(x) where ψn(x) is the wavefunction of the HO, given in equation (81)

and

Wmn(x, p) = 1

π

∫ ∞

−∞
ψ∗

m(x + y)ψn(x − y) e2ipy dy. (29)

As an illustration we show how the integral (30) can be calculated by using the sum rule (25).
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Corollary 2. For y, z ∈ C, we have [8, section 7.377]:

Imn(y, z) ≡
∫ ∞

−∞
Hm(x + y)Hn(x + z) e−x2

dx = √
πm!2nzn−mLn−m

m (−2yz),

for m � n, (30)

where Lα
m(x) are the associated Laguerre polynomials.

Proof. Substituting the expansion (25) for the standard Hermite polynomials (α = 2) into the
integrand of (30), we get

Imn(y, z) =
m∑

r=0

n∑
s=0

(
m

r

)(
n

s

)
(2y)m−r (2z)n−s

∫ ∞

−∞
Hm−r (x)Hn−s(x) e−x2

dx

=
m∑

r=0

n∑
s=0

(
m

r

)(
n

n − s

)
(2z)s−r (4yz)r

√
π2m−r (m − r)!δm−r,n−s

= √
πm!2m(2z)n−m

m∑
r=0

(
n

m − r

)
(2yz)r

r!
= √

πm!2nzn−mLn−m
m (−2yz), (31)

where we used the orthogonality relation (56) and then the power expansion for the associated
Laguerre polynomials [8, section 8.970]. �

3.3. New sum rules

We now prove the factorization sum rule (5) and a few others, by using combinations of the
above techniques.

3.3.1. The factorization sum rule and corollaries.

Proposition 3 (generalized factorization sum rule). The GHP satisfy the following sum rule,
for c, s ∈ C and c2 + s2 = 1:

H̃m(cx − sy)H̃ n(sx + cy) =
m+n∑
r=0

C[m,n],[r,m+n−r](c, s)H̃ r (x)H̃m+n−r (y), (32)

where the coefficients C are given in equation (19).

Proof. These sum rules follow immediately by applying the operator identities (18) to the
ground function g(x, y) ≡ 1. �

The conjectured sum rule (33) is a special case of (32), where m = n and c = s = 1/
√

2.
But instead of calculating the coefficients C (equation (19)) for this special case, it is easier to
give a direct proof of (33).

Proposition 4 (Factorization sum rule). The GHP satisfy the following sum rule:

2nH̃ n

(
x − y√

2

)
H̃ n

(
x + y√

2

)
=

n∑
s=1

(
n

s

)
(−1)sH̃ 2s(y)H̃ 2n−2s(x) (33)

Proof. For the transformation (23), we have R(r±) = (R(x) ± R(y))/
√

2, and therefore

(2R(r−)R(r+))
n = (R2(x) − R2(y))n =

n∑
s=1

(
n

s

)
(−1)sR2s(y)R2n−2s(x), (34)

which immediately leads to equation (33) by applying both sides of equation (34) to 1. �
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By comparing the expansion (32) for c = s = 1/
√

2 and m = n with (33), we immediately
get the following sum rule for the binomial coefficients:

Corollary 3.

2nC[n,n],[r,2n−r](c = s = 1/
√

2) = (−1)n
min(n,r)∑

q=0

(
n

r − q

)(
n

q

)
(−1)q

=




0 for r odd

(−1)r/2

(
n

r/2

)
for r even.

From sum rule (33) we can also derive easily many other sum rules for Hermite polynomials.
Here are two further examples:

Corollary 4. For r± := (x ± y)/
√

2, we get

2n+1/2H̃ n+1(r+)H̃ n(r−) =
n∑

s=1

(
n

s

)
(−1)s[H̃ 2s(y)H̃ 2n+1−2s(x) + H̃ 2s+1(y)H̃ 2n−2s(x)], (36)

and

2n−3/2[H̃ n−1(r+)H̃ n(r−) − H̃ n(r+)H̃ n−1(r−)] =
n∑

s=1

(
n − 1

s − 1

)
(−1)sH̃ 2s−1(y)H̃ 2n−2s(x).

(37)

Proof. The above sum rules follow by applying the operators
√

2R(r+) = R(x) + R(y) and
L(r+)−L(r−) = √

2L(y) to both sides of equation (33), where L(x) ≡ α−1 ∂
∂x

is the lowering
operator (A.15), defined in appendix B. �

3.3.2. Sum rules based on rotational invariance. The following sum rules are based on the
rotational invariance of the scalar product (20).

Proposition 5. Let wi =: (Ox)i . Then the sum rule

∑
|q|=n


 n!

q1! · · · qN !

N∏
j=1

H̃ 2qj
(wj )


 =

∑
|p|=n


 n!

p1!p2! · · · pN !

N∏
j=1

H̃ 2pj
(xj )


 (38)

holds for the corresponding GHP .

Proof. The multinomial expansion of the nth power of the sums on both sides of
equation (20) gives

∑
|q|=n


 n!

q1! · · · qN !

N∏
j=1

R2qj (wj )


 =

∑
|p|=n


 n!

p1!p2! · · · pN !

N∏
j=1

R2pj (xj )


 . (39)

Equation (38) follows immediately by applying this operator equation to 1. �

Specializing to N = 2 and considering the rotation (23), equation (38) leads to the sum
rule (40):

Corollary 5. The GHP satisfy the sum rule
n∑

s=1

(
n

s

)
H̃ 2s

(
x − y√

2

)
H̃ 2n−2s

(
x + y√

2

)
=

n∑
s=1

(
n

s

)
H̃ 2s(x)H̃ 2n−2s(y). (40)
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Note that equation (40) could also be proved by using the sum rule (1) and equating both
sides to a Laguerre polynomial. Similarly, the N-dimensional version, sum rule (38), can also
be proved by using the N-dimensional version of (2) [8, section 8.977]. However, our proof,
which is based on the operator techniques, is more direct and does not require any borrowed
formulas. It also exhibits the rotational invariance, which is the basis of the above sum rules.

By combining the operator equalities which led to the previous two propositions, we now
get a new sum rule.

Proposition 6. The GHP satisfy the sum rule

n∑
s=1

(
n

s

)
H̃ n+2s(r+)H̃ 3n−2s(r−) = 2−n

n∑
s=1

(
n

s

)
(−1)sH̃ 4s(y)H̃ 4n−4s(x). (41)

Proof. Applying equation (34) on [R2(r+) + R2(r−)]n = [R2(y) + R2(x)]n, we get

[2nRn(r+)R
n(r−)][R2(r+) + R2(r−)]n = [R4(x) − R4(y)]n, (42)

which, by using the expansion 39 for N = 2, gives

2n

n∑
s=1

(
n

s

)
Rn+2s(r+)R

3n−2s(r−) =
n∑

s=1

(
n

s

)
(−1)sR4s(y)R4n−4s(x), (43)

that leads to equation (41). �

As a final illustration, we prove the following interesting sum rule for N = 3, which
shows that an amazing variety of sum rules can be derived by using the above techniques:

Proposition 7.

6n/2H̃ n

(
x − y√

2

)
H̃ n

(
x + y + z√

3

)

=
∑

p1+···+p4=n

n!(−1)p2+p4

p1!p2!p3!p4!
H̃ 2p1+p3(x)H̃ 2p2+p4(y)H̃ p3+p4(z). (44)

Proof. For the orthogonal transformation:

w1 = 1√
2
(x1 − x2), w2 = 1√

3
(x1 + x2 + x3), w3 = 1√

6
(x1 + x2 − 2x3), (45)

we have
√

6R(w1)R(w2) = (R1 − R2)(R1 + R2 + R3) = R2
1 − R2

2 + R1R3 − R2R3, (46)

where Ri := R(xi). The multinomial expansion of the nth power of (46) gives

6n/2Rn(w1)R
n(w2) =

∑
p1+···+p4=n

n!

p1!p2!p3!p4!
R

2p1
1

( − R2
2

)p2
(R1R3)

p3(−R2R3)
p4

=
∑

p1+···+p4=n

n!

p1!p2!p3!p4!
(−1)p2+p4R

2p1+p3
1 R

2p2+p4
2 R

p3+p4
3 . (47)

By applying this operator equation to g0(x) ≡ 1, we immediately get the sum rule (44). �
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3.4. Sum rules with special arguments

Most of our sum rules are consequences of rotational invariance symmetries. For this reason
they depend on two or more variables. But by substituting special arguments, such as y = x,
in our ‘primary’ rotational sum rules, we can get a wide variety of more specific sum rules,
with a reduced number of variables. Such sum rules may be called derived or secondary sum
rules. If we look directly at such derived sum rules we may not recognize their very rotational
origin.

For example, the sum rule

Corollary 6.

Hn(x)Hn(x) = 2−n

n∑
s=1

(
n

s

)
(2s)!

s!
H2n−2s(

√
2x) (48)

is a special case of sum rule (33), where one sets y = 0, changes x/
√

2 → x and substitutes
H2s(0) = (−1)s(2s)!/s!. Here we use the standard Hermite polynomials Hn(x) ≡ H̃ (2, 1; x),
for easy comparison:

At first glance, the sum rule (48) looks like a special case (for m = n) of the sum rule in
one variable,

Hm(x)Hn(x) =
min(m,n)∑

s=0

2ss!

(
m

s

)(
n

s

)
Hm+n−2s(x) (49)

due to Feldheim [14, 18, p 255]. A closer look shows that the sum rules (48) and (49) are
different, because the argument of the Hk on the rhs of (48) is

√
2x whereas that of (49) is x.

Apparently Feldheim sum rule does not depend on rotational symmetry. It has been proved by
a variety of methods, including by induction [19].

By specializing sum rule (49) to m = n and equating it to (48), we get the following
amusing relation, involving Hermite polynomials of different arguments,

√
2x and x:

Corollary 7.

H 2
n (x) = 2−n

n∑
s=1

(
n

s

)
(2s)!

s!
H2n−2s(

√
2x) =

n∑
s=0

2ss!

(
n

s

)(
n

s

)
H2n−2s(x). (50)

As a final illustration of using special arguments, we derive two secondary sum rules from
(44):

Corollary 8.

6n/2H̃ n

(
x − y√

2

)
H̃ n

(
x√
3

)
=

∑
p1+···+p4=n

n!(−1)p2+p3

p1!p2!p3!p4!
H̃ 2p1+p3(x)H̃ 2p2+p4(y)H̃ p3+p4(y)

(51)

6H2

(
2x√

3

)
= −H4(x) + H 2

2 (x) + 2H2(x) − 2H 2
1 (x). (52)

Proof. Sum rule (51) follows immediately from (44) by setting z = −y. Equation (52)
follows by setting z = 0 and x = y in equation (44), and using, H2n+1(0) = 0 and
H2n(0) = (−1)n(2n)!/n!. �
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Primary sum rules and some of the secondary ones, such as (51), are easily recognizable
as rotational sum rules, because the sums on the indices of the Hermite polynomials are
the same for all terms. In contrast, the origin of sum rules such as (48) and (52) is
difficult to recognize as being due to O(N) symmetry, because the index balance gets lost
when the Hermite polynomials with zero arguments are replaced by the constant factors,
H2s(0) = (−1)s(2s)!/s!. For instance, in equation (52) the terms involving H4 and H 2

2 have
a total index 4, whereas the terms H2 and H 2

1 have a total index 2.

3.5. General expansions and reducible representation of the SO(N) group

Most of the sum rules that we have so far proved are, essentially, special cases of the following
general result:

Proposition 8. Let wi := (Ox)i . Then, every product of H̃mi
(wi) of different indices i can be

expanded linearly into similar products of H̃ pi
(xi):

N∏
i=1

H̃mi
(wi) =

∑
|p|=|m|

C[m],[p](O)

N∏
i=1

H̃ pi
(xi), where [p] ≡ [p1, . . . , pN ]. (53)

Proof. This follows easily by applying (16) to g(x) ≡ 1. �

The expansion (53) may appear self-evident, but it is not actually, since it is not generally
valid for unitary transformations, as we can verify from the following simple example. The
transformation w1 = ix and w2 = −iy is unitary. But H2(w1) = 4w2

1 − 2 = −4x2 − 2 cannot
be expanded linearly in terms of the n = 2 basis, {H2(x),H1(x)H1(y),H2(y)}.

In fact, if we normalize the above products properly, as follows,

hn
[p](x) := (αβ)−n/2

N∏
i=1

H̃ pi
(xi)√
pi!

where [p] ≡ [p1, . . . , pN ] and n := |p|, (54)

we obtain a basis for a (reducible) orthogonal representation of the complex SO(N) group.

Proposition 9. The expansion coefficients Dn
[q],[p](O) in

hn
[p](O

−1x) :=
∑
|q|=n

hn
[q](x)Dn

[q],[p](O), where n := |p|, (55)

form a (reducible) orthogonal representation of O ∈ SO(N).

Proof. Here, we shall prove the above proposition for real SO(N). The proof for the complex
SO(N) is given in [20]. The GHP are orthogonal with respect to the following scalar product:∫ ∞

−∞
H̃m(x)H̃ n(x) exp[−αx2/(2β)] dx =

(
2βπ

α

)1/2

(αβ)nn!δmn, for α/β > 0.

(56)

Therefore, the product of functions (54) form an orthonormal basis for each N � 1,
relative to the scalar product

〈
hn

[p]

∣∣hm
[q]

〉
:=

∫
hn

[p](x)hm
[q](x) dµ(x) =

N∏
i=1

δpi ,qi
, (57)
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where

dµ(x) :=
(

α

2βπ

)N/2

exp
[−α

(
x2

1 + · · · + x2
N

)/
2β

]
dNx, (for α/β > 0), (58)

is an invariant measure. Consequently, the transformed functions hn
[p](O

−1x) are also
orthonormal relatively to the same scalar product. Therefore, the matrix D(O) must be
orthogonal, because it transforms one orthonormal basis into another. �

As a consequence of the above orthogonality we can prove many relations involving the
binomial coefficients. In particular, for N = 2, we get the following amusing relation:

Corollary 9. The relation

m+n∑
r=0

r!(m + n − r)!

m!n!


min(n,r)∑

q=0

(
m

r − q

)(
n

q

)
(−1)m−r+qcn+r−2qsm+2q−r




2

= 1 (59)

holds identically for c, s ∈ C, and c2 + s2 = 1.

Proof. By noting the normalization factors in the expression (54) of the hm+n
[m,n], we get from

equation (32)

D[r,m+n−r],[m,n](O) =
√

r!(m + n − r)!

m!n!
C[m,n],[r,m+n−r](O). (60)

The sum rule (59) follows by substituting the expression (19) for the C-coefficients into the
orthogonality condition

m+n∑
r=0

D2
[r,m+n−r],[m,n](O) = 1. (61)

�

For α/β > 0 the products of the functions hn
[p](x) with the Gaussian factor

exp[−αx2/(4β)] yield the wavefunctions of the isotropic HO in N-dimensions, with total
energy En = (n + N/2)h̄ω. Thus, the transformation (55) corresponds to the mixing of the
degenerate energy states under orthogonal transformations. Moreover, our arguments show
that these transformations:

(1) are also valid for complex rotations, for the heat polynomials, α/β < 0, and for the simple
powers, β = 0;

(2) give explicit procedure to calculate the representation matrices D(O) of equation (55).

4. The sl(2,R) algebra of the Laguerre polynomials

In this section we construct raising and lowering operators K+ and K− for Laguerre
polynomials Ln(z), by using the corresponding operators R and L for the Hermite polynomials.

4.1. Constructing the raising operator K+ for the Laguerre polynomials

The following construction was inspired by equation (1). By applying

K̃+ := − 1
4 [R2(2, 1; x) + R2(2, 1; y)] (62)
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to the identity function g0(x) = 1, we create the rhs of equation (1), and with it the Laguerre
polynomial Ln:

K̃n
+ · 1 = 1

(−4)n

n∑
s=1

(
n

s

)
H2n−2s(x)H2s(y) = n!Ln(x

2 + y2). (63)

This means that K+ acts as a raising operator for the Laguerre polynomials, if it is applied to
the constant function L0(r

2) := 1,

K̃n
+ · 1 = n!Ln(r

2), so that K̃+Ln(r
2) = (n + 1)Ln+1(r

2). (64)

Since the Ln(r
2) are functions of the variable z := r2 = x2 + y2, it is desirable to express the

operator K̃+ as a function of the variable z only. To do this, we use the commutation relations
∂

∂xk
xk = xk

∂
∂xk

+ 1, and get

K̃+ ≡ −1

4
[R2(2, 1; x1) + R2(2, 1; x2)] = −

2∑
k=1

(
xk − 1

2

∂

∂xk

)2

=
2∑

k=1

(
−1

4

∂2

∂x2
k

+ xk

∂

∂xk

− x2
k +

1

2

)
= −1

4
� + r

∂

∂r
− r2 + 1. (65)

The two-dimensional Laplacian � is composed of a radial part and an angular momentum
part: � = �r − L2

z

/
r2. In the following, we shall neglect the angular momentum term, since

we shall apply the operator K̃+ to cylindrically symmetric functions only f (r2), on which L2
z

gives 0.
We now rewrite �r in terms of z = r2, by using the identity D := ∂/∂z = ∂/∂r2 =

(1/(2r))∂/∂r:

�r = 1

r

∂

∂r

(
r

∂

∂r

)
= 1

r

∂

∂r

(
r2

(
1

r

∂

∂r

))
= 4DzD

= 4(D + zD2). (66)

Finally, by substituting this identity into equation (65) and neglecting the L2
z

/
r2 term, we get

the desired expression for the raising operator K+,

K+(z) = K̃+ − L2
z

4r2
= −zD2 − D + 2zD − z + 1. (67)

4.2. The algebra generated by K+ and K− operators

Defining the differential operator

K−(z) := −zD2 − D = − 1
4�r, (68)

and by calculating the commutation with K+, we get the new operator

K0 := 1
2 [K−,K+] = 1

2 (K− + K+ + z) = −zD2 − D + zD + 1/2. (69)

Since the three operators K0,K− and K+ satisfy the commutation relations [K−,K+] =
2K0, [K0,K+] = K+, [K0,K−] = −K−, they are promptly recognized belonging to the
sl(2, R) � su(1, 1) algebra [3, 12]. Thus, the above K operators provide a representation of
sl(2, R) in terms of differential operators. This algebra has many applications in physics, and
Wybourne devoted a whole chapter to these applications [12]. Moreover, this algebra has the
following two-dimensional representation

K+ →
(

0 1
0 0

)
, K− → −

(
0 0
1 0

)
, K0 → 1

2

(
1 0
0 −1

)
. (70)
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By comparing equation (69) with the well-known defining equation for the Laguerre
polynomials [8, section 8.979] (zD2 + (1 − z)D + n)Ln(z) = 0, we can easily see that
these polynomials are eigenfunctions of K0,

K0Ln = (n + 1/2)Ln. (71)

Finally, using (71) and the commutation relation [K0,K−] = −K− we verify that K− is a
lowering operator for Laguerre polynomials:

K−(z)Ln(z) = nLn−1(z). (72)

4.3. An infinite-dimensional representation of sl(2, R) group operators

The relations

K+Ln = (n + 1)Ln+1, and K−Ln = nLn−1, (73)

suggest the following infinite-dimensional matrix representation of sl(2, R), where k+ = k
†
−:

k+ =




0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0

0 0 0 4
. . .


 , k− =




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

0 0 0 0
. . .


 . (74)

The commutator of these two matrices yields the representation of K0:

k0 = 1

2
[k−, k+] = 1

2




1 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 7 0

0 0 0 0
. . .


 , (75)

which is a diagonal matrix, as expected from (71). This unitary representation is obtained by
mapping the Ln(x) onto the following vector basis:

L0(x) �→ |0〉 =




1
0
0
0
...


 , L1(x) �→ |1〉 =




0
1
0
0
...


 , L2(x) �→ |2〉 =




0
0
1
0
...


 , etc. (76)

5. Applications of the sum rules and the GHP

5.1. Evaluating Wigner functions using the factorization sum rule

As an interesting application of the factorization sum rule (40), we shall first evaluate the
integral ∫ ∞

−∞
Hn(x + y)Hn(x − y) e−y2

e2ipy dy

and then use it to calculate the diagonal Wigner function Wnn of (29), associated with the HO
elementary projector |n〉〈n|:
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Proposition 10.

In(x, p) ≡
∫ ∞

−∞
Hn(x + y)Hn(x − y) e−y2

e2ipy dy = (−1)n
√

π2nn!Ln(2x2 + 2p2) e−p2
.

(77)

Proof. Substituting the factorization sum rule (40) into the integrand of (77), we get

In(x, p) = 1

2n

n∑
s=1

(
n

s

)
(−1)sH2n−2s(

√
2x)

∫ ∞

−∞
H2s(

√
2y) e−y2

e2ipy dy

= 1

2n
√

2

n∑
s=1

(
n

s

)
(−1)sH2n−2s(

√
2x)

∫ ∞

−∞
H2s(z) e−z2/2 ei

√
2pz dz

=
√

π

2n

n∑
s=1

(
n

s

)
H2n−2s(

√
2x)H2s(

√
2p) e−p2

= (−1)n
√

π2nn!Ln(2x2 + 2p2) e−p2
, (78)

where we have first substituted z = √
2y, then used the integral [8, section 7.376]:∫ ∞

−∞
Hs(u) e−u2/2 eiuv du =

√
2π isHs(v) e−v2/2, (79)

and finally we used the sum rule (1). �

The Wigner function [3]:

Wnn(x, p) = 1

π

∫ ∞

−∞
ψ∗

n (x + y)ψn(x − y) e2ipy dy, (80)

associated with the HO wavefunctions

ψn(x) = (
√

π2nn!)−1/2Hn(x) exp[−x2/2], (81)

has been calculated by a variety of methods. An interesting but somewhat involved derivation is
outlined in the book of Kim and Noz [3]. They first show that (80) is function of r2 = x2 +p2,
then, that it satisfies a linear differential equation in r, whose solution is proportional to
Laguerre polynomials. Finally, the normalization is determined to get the correct result. Here,
we calculate (80) directly, using the integral (77).

Corollary 10. The Wigner function (80) is given by [3, 21–24]

Wnn(x, p) = Wn(r) = (−1)n

π
Ln(2r2) e−r2

, where r2 ≡ (x2 + p2). (82)

Proof. Substituting the wavefunction (81), with arguments x ± y, into the integral (80) and
then using the result in (77), we get

Wn(x, p) = 1

π(
√

π2nn!)
e−x2

In(x, p) = (−1)n

π
Ln(2[x2 + p2]) e−[x2+p2]. (83)

�
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5.2. Some applications of the GHP

The Hermite polynomials are quite familiar to physicists, since they enter in the wavefunctions
of the HO [25]. Below, we give three applications of the GHP which are less familiar.

(1) Heat equation. By differentiating the explicit expression (A.3), in appendix A, with
respect to β and using the recursion formulas for the Hermite coefficients,

s

[
n

s

]
= n(n − 1)

[
n − 2

s

]
, (84)

we get

∂

∂β
H̃ n(α, β; x) = −n(n − 1)

α

2
H̃ n−2(α, β; x) = − 1

2α

∂2

∂x2
H̃ n(α, β; x), (85)

where we also used equation (B.1) to obtain the last equality. Equation (85) immediately
shows that the heat polynomials �n(t, x) = H̃ n(1,−2t; x) are solutions of the heat
equation [10]

∂

∂t
u(t; x) = ∂2

∂x2
u(t; x), with the initial conditions u(0; x) = xn. (86)

Note that the heat polynomials, which are special GHP , are much more suitable
for describing the solutions of (86), than the standard Hermite polynomials, because
H̃ n(1,−2t; x) remains finite for t = 0, whereas using the standard Hermite polynomials
instead, would lead for t → 0 to Hermite polynomials with infinite arguments
Hn(ix/(2

√
t)), multiplied by a vanishing multiplicative factors (−i

√
t)n (see (A.13)).

(2) Generalized Poisson distributions. From expression (A.3), we see that the GHP are
positive functions for negative β and positive α and x. Therefore, the functions

Pn(γ ; x) := 1

n!
�n(γ, x) = 1

n!
H̃ n(1,−2γ ; x) e−x−γ (87)

can be viewed as probability densities, because Pn � 0 and

∞∑
n=0

Pn(γ ; x) = 1. (88)

This sum follows by substituting t = α = 1 and β = −2γ in equation (A.16) for the
generating function. In the limit γ → 0, the above distribution becomes a Poisson
distribution,

lim
γ→0

Pn(γ ; x) = 1

n!
xn e−x.

(3) Squeezed states and pseudo-diffusion equation. Another probability density distribution,
now in the (q, p) phase space, is obtained by squaring the amplitudes 〈p, q; λ|n〉, which
is the HO basis state |n〉 in the squeezed states representation |p, q; λ〉, where λ is related
to the real squeezing parameter y, by λ ≡ e2y , so that λ = 1 (or y = 0) corresponds to
the common (unsqueezed) coherent state. Using our operator techniques, we were able
to calculate the above amplitudes directly in terms of GHP [26], so that

Pn(p, q; λ) := |〈p, q; λ|n〉|2 = 2
√

λ

2nn!(λ + 1)
|H̃ n(2, ξ ;wλ)|2 exp

[
−λq2 + p2

λ + 1

]
,

n � 0, (89)



444 J Daboul and S S Mizrahi

where

ξ := λ1/2 − λ−1/2

λ1/2 + λ−1/2
, and wλ := λ1/2q + iλ−1/2p

λ1/2 + λ−1/2
. (90)

These Pn(p, q; λ) functions are probability distributions in the phase-space variables
(q, p), because the squeezed states are normalized, 〈p, q; λ|p, q; λ〉 = 1, for all λ. In
the limit of zero squeezing y → 0 (i.e. λ → 1) we get ξ → 0, and (89) converges to a
Poisson distribution with parameter (mean value) (q2 + p2)/2,

Pn

(
q2 + p2

2

)
:= Pn(p, q; 1) = 1

2nn!
|H̃ n(2, 0;w1)|2 exp

[
−q2 + p2

2

]

= 1

n!

(
q2 + p2

2

)n

exp

[
−q2 + p2

2

]
, n � 0. (91)

The GHP has enabled us to obtain the ξ = 0 limit without effort, since

lim
ξ→0

H̃ n(2, ξ ;wλ) = H̃ n(2, 0;w1) = (2w1)
n = (q + ip)n. (92)

Alternatively, if we use in equation (89) the standard Hermite polynomials instead of
the GHP , we obtain by using the scaling relation (A.7), the more familiar expression
[4, 5, 7]:

Pn(p, q; λ) := 1

n!µ

(
ν

2µ

)n ∣∣∣∣Hn

(
β√
2µν

)∣∣∣∣
2

exp

[
−|β|2 + Re

(
ν̄

µ
β2

)]
, n � 0,

(93)

where

ν ≡ sinh y = λ1/2 − λ−1/2

2
, µ ≡ cosh y = λ1/2 + λ−1/2

2
,

β ≡ λ1/2q + iλ−1/2p√
2

=
√

2µwλ. (94)

(In our case, ν is real, but we used ν̄ in (93), so that we get exactly the square of the
absolute value of the expression for 〈n|β〉 given in equation (3.23) of [5].) Since ν → 0
for y → 0, we see that the arguments of the standard Hermite polynomials in (93) become
infinite in the limit ξ = ν/µ → 0, and a careful study of products of infinite and vanishing
quantities becomes necessary for getting the Poisson-distribution limit.
Thus, the use of the GHP enabled us to discover that the above probability densities
satisfy the following ‘pseudo diffusion equation’ [26]:

∂

∂λ
Pn(p, q; λ) = 1

4

(
∂2

∂p2
− 1

λ2

∂2

∂q2

)
Pn(p, q; λ), (95)

which describes the effect of squeezing as a pseudo diffusion of the probability densities
Pn(p, q; λ) in phase space.

6. Summary

We have introduced the generalized Hermite polynomials H̃ n(α, β; x), which have, as
particular cases, the standard Hermite polynomials, the heat polynomials and also simple
powers. We described their properties in the appendices. We discussed some applications
of the GHP to the heat equation, generalized Poisson distributions and squeezed states. In
particular, we showed that the GHP are especially useful for obtaining the β → 0 limit.
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Finding a new sum rule is an achievement, especially in such an old and well-established
mathematical field, such as orthogonal polynomials. Here, we gave a general method which
has the potential of proving and discovering numerous interesting sum rules for the GHP .
This method is based on the symmetry group O(N) of complex orthogonal transformations.
We described several techniques, and illustrated them by giving new proofs for old sum rules
and by proving several new sum rules. We illustrated how some of the sum rules can be
applied for evaluating certain integrals, which are useful for calculating the Wigner functions
of the HO state functions.

We also used the raising and lowering operators for the Hermite polynomials to construct
the operators, K+,K− and K0, for the Laguerre polynomials. Their commutation relations
lead to sl(2, R) algebra, for which we gave an ∞-dimensional unitary representation.

As final remark it is worth noting that the GHP can be further generalized to polynomials
of the form

H(r)
n (α, β; x) =

[n/r]∑
s=0

cn
s x

n−rs , cn
0 �= 0, (96)

where r can be any positive integer, and not just 2. These ‘r-polynomials’ H(r)
n can be generated

by using the raising operators Rr := αx−βDr−1. However, the above technique for obtaining
sum rules cannot be applied for r �= 2, since the generators Rr for r �= 2 are not linear in the
D operator and therefore they do not have simple transformation properties.
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Appendix A. Generalized Hermite polynomials, their symmetry properties and
generating function

We define the generalized Hermite polynomials (GHP) by means of the raising operators
R(α, β, x) applied to the ground function g0(x) := 1, as

H̃ n(α, β; x) := Rn(α, β; x) · 1. (A.1)

By successive application of R, we easily get

H̃ 0(x) = 1, H̃ 3(x) = α3x3 − 3α2βx,

H̃ 1(x) = αx, H̃ 4(x) = α4x4 − 6α3βx2 + 3α2β2,

H̃ 2(x) = α2x2 − αβ, H̃ 5(x) = α5x5 − 10α4βx3 + 15α3β2x.

(A.2)

These polynomials are special cases of the general expression for the GHP

H̃ n(α, β; x) := Rn(α, β; x) · 1 =
[n/2]∑
s=0

[
n

s

](
−αβ

2

)s

(αx)n−2s , (A.3)

where [
n

s

]
:=

[
n

s

]
, (A.4)

that we call Hermite coefficients.
The GHP (A.3) has the following scaling properties:

H̃ n(σ
−1α, σβ; σx) = H̃ n(α, β; x), (A.5)
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H̃ n(σα, σβ; x) = σnH̃ n(α, β; x), (A.6)

H̃ n(α, σ 2β; σx) = σnH̃ n(α, β; x), (A.7)

where again, the third relation follows from the first two. These scaling properties can also be
obtained directly from the following symmetry properties of the raising operator (9):

R(σ−1α, σβ; σx) = R(α, β; x) = 1

σ
R(α, σ 2β; σx). (A.8)

A.1. Particular cases

The GHP reduce to standard Hermite polynomials and to simple powers for special values of
α and β:

H̃ n(2, 1; x) = Hn(x) =
[n/2]∑
s=0

[
n

s

]
(−1)s(2x)n−2s , (A.9)

H̃ n(α, 0; x) = (αx)n. (A.10)

The scaling properties (A.5) and (A.6) allow us to relate the GHP to some standard definitions:

H̃ n(α, β; x) =
(

αβ

2

)n/2

H̃ n

(
2, 1;

√
α

2β
x

)
=

(
αβ

2

)n/2

Hn

(√
α

2β
x

)
, (A.11)

H̃ n(1, 1; x) = Hen(x) = 2−n/2Hn

(
x√
2

)
, (A.12)

H̃ n(1,−2t; x) = �n(t, x) = (−i
√

t)nHn

(
ix

2
√

t

)
, for t > 0, (A.13)

where �n(t, x) are known as the heat polynomials [10, 11].

A.2. The generating function

By noting the Baker–Campbell–Hausdorff formula [3],

eA+B = e
1
2 [A,B] eA eB, (A.14)

which holds if [A,B] commutes with both A and B, we get

etR = eαxt−tβD = e− αβ

2 t2
eαxt e−tβD for t ∈ C. (A.15)

We can now derive the generating function of the GHP , by applying this operator equation to
g0(x) ≡ 1, and noting that e−tβD · 1 = 1:

etR.1 =
∞∑

n=0

tn

n!
Rn · 1 =

∞∑
n=0

tn

n!
H̃ n(α, β; x) = eαxt e− αβ

2 t2
. (A.16)

A.3. Two proofs of the power expansion of the GHP

The usual proof of the expression (A.3) for the standard Hermite polynomials [25] is obtained
by expanding the lhs of (A.16) in powers of t, and equating it to its rhs.

Another proof of (A.3) follows by induction, by using the recursion relation (B.2) for the
GHP and the following recursion formula for the Hermite coefficients:[

n + 1
s

]
=

[
n

s

]
+ 2n

[
n − 1
s + 1

]
. (A.17)
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Appendix B. The lowering operator L

It is easy to see that the operator (note that in [26] we normalized L differently, namely as
D/β):

L := L(α; x) := 1

α
D, where D := ∂

∂x
, (B.1)

satisfies the canonical commutation relation:

[L,R] := LR − RL = 1, (B.2)

and therefore leads to

[L,Rn] = nRn−1, (B.3)

as can be proved induction. By applying (A.17) to 1, we get

LH̃n(α, β; x) = LRn · 1 = RnL · 1 + nRn−1 · 1 = nH̃ n−1(α, β; x), (B.4)

where we used the fact that L · 1 = 0.
Since L lowers the index of H̃ n(α, β; x), it will be called the lowering operator of the

GHP . Note that L is β-independent.
Applying R = αx − βD = αx − αβL to H̃ n, immediately leads to a recursion formula

for the GHP:

H̃ n+1(α, β; x) = αxH̃ n(α, β; x) − αβnH̃ n−1(α, β; x). (B.5)

Finally, we obtain the differential equation for the GHP by considering the eigenfunctions
of the number operator N ≡ RL. Since N H̃ n = nH̃ n, we get(

−β

α

∂2

∂x2
+ x

∂

∂x
− n

)
H̃ n(α, β; x) = 0. (B.6)
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